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Abstract  —  The increasing penetration of PV requires more 

and more load flow calculations to assess the corresponding 
impact on planning and operation of distribution systems, e.g., 
during high-resolution quasi-static time-series calculations. There 
is therefore a strong incentive to optimize the speed of 
distribution load flow engines as much as possible without 
compromising on solution accuracy. This paper details the 
structure of a commercial-grade topology-independent Newton-
Raphson distribution load flow engine, the reasoning behind some 
of its design choices, and recent improvements made to three 
rarely discussed aspects: initialization, calculation and 
discretization of tap changer positions, and solution of linear 
equations. Computer studies demonstrate the reduction in 
computational time on various distribution systems, allowing for 
faster interconnection studies with high PV penetration. 

I. INTRODUCTION 

The large amount of distributed energy resources (DERs) 

and especially PV now found at the low- and medium-voltage 

levels require rethinking the planning and operation of 

distribution grids. Distribution system analysis tools are 

becoming more important than ever, as they can assess the 

various impacts of DERs on operating constraints, protection 

schemes, losses, and so on [1]. While it is now recognized that 

precise electromagnetic transient (EMT) studies are sometimes 

needed at the distribution level, load flow calculations remain 

ubiquitous, whether in “standalone” mode or within quasi-

static time-series (QSTS) studies [2]. Improving the speed of 

load flow engines will therefore facilitate the execution of 

more comprehensive studies with PV, such as year-long high-

resolution QSTS studies [2]. 

Traditional distribution system load flow engines often use 

the ladder iterative method (often known as backward-forward 

sweep), which is tailored for radial and passive  systems. 

While the ladder iterative method can be adapted to handle 

meshes [3] and voltage-controlled nodes [4], its efficiency 

decreases quickly as the number of loops and DERs in voltage 

control mode increases. In fact, ladder iterative methods will 

rarely converge in urban meshed networks . 

Modern commercial-grade load flow engines often use 

matrix-based methods. Some of these engines are based on a 

full Newton-Raphson approach [5]–[8], while others use a 

fixed point scheme [8]–[10]. Full Newton-Raphson 

approaches can naturally handle continuous controls by 

integrating them in the constraint vector, and typically 

converge in a few iterations; however, they require matrix re-

factorizations, which are typically considered as computational 

bottlenecks. Fixed point schemes keep the same matrix factors, 

and therefore are considered faster; however, they may have 

more difficulty converging. The use of a smaller external 

sensitivity matrix can improve convergence in fixed point 

techniques [10], but its calculation and solution may require 

non-negligible computational effort when the number of 

control devices is large. 

The CYME power engineering software has two load flow 

engines for unbalanced distribution systems: Voltage Drop 

Unbalanced (VDU, based on the ladder iterative approach), 

and the more recent Newton-Raphson Unbalanced (NRU, 

based on a full Newton-Raphson scheme). This paper first 

gives an overview of NRU, which is built on the work set forth 

in [8]. We discuss in detail three aspects of NRU that are often 

overlooked in the literature but that can have a significant 

impact on computational speed: the initialization method, the 

calculation and discretization of load tap changer (LTC) 

positions, and the solution of the resulting system of linear 

equations. Specifically, we present the advantages and 

disadvantages of initializing NRU with a fixed point (FP) or 

flat start (FS) approach, and briefly describe how to generate 

the FS profile considering NRU’s modified nodal formulation. 

The benefits of integrating the control variables within NRU’s 

set of equations are also discussed. Two LTC position 

normalization approaches are then presented. Finally, we 

challenge the often-held belief that constant-matrix engines are 

necessarily faster than full Newton-Raphson ones unless the 

former requires many more iterations. A brief discussion on 

two linear solvers, PARDISO [11] and KLU [12], is also 

included. Computer studies on various distribution systems are 

then presented to support the claims and hypotheses made 

throughout this paper. 

II. LOAD FLOW FORMULATION AND ALGORITHMIC ASPECTS 

A. Fundamentals 

Using the principle of modified nodal analysis (MNA, 

sometimes referred to as modified augmented nodal analysis 

[8]), the main load flow constraints can be described by 

 ( )cdnnn xivfi ,,=  (1) 



 

 

 ( )cdndd xivfv ,,=  (2) 

 ( )cdncc xivfy ,,=  (3) 

where nf , df , and cf  are – potentially  nonlinear – functions 

enforcing Kirchhoff’s current law at every node, Kirchhoff’s 

voltage law for ideal components (voltage sources, switches, 

and branch-dependent devices such as transformers and 

regulators), and additional network/component constraints, 

respectively; nv , di , and cx  are state vectors comprising the 

nodal voltages, the currents of the ideal components, and the 

additional state variables (e.g., the equivalent admittance of 

DERs), respectively; and ni , dv , and cy  are nodal injection 

currents, voltages of ideal voltage sources, and the desired 

values of the additional network constraints. Complex values 

are represented using rectangular components. A multiphase 

framework is considered to model unbalanced conditions and 

topologies typical of North American distribution systems. 

Since some of the constraints are nonlinear, (1)–(3) must be 

solved iteratively, herein using a full Newton-Raphson 

approach. Writing the Taylor series of (1)–(3) and truncating it 

therefore yields the main NRU equation 
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or, written in compact form, 

 kkkk fbxJ −=∆ . (5) 

In the above, the superscript k  indicates the iteration count; 
k

n
''Y , k

cD , k
rD , k

dS , k
c1C , k

c2C , k
l1C , k

l2C , and k
dC  are 

submatrices of the system Jacobian kJ ; and the ∆  operator 

indicates the difference between a given vector at the present 

and past iterations (e.g., 1−
−=∆

k
n

k
n

k
n vvv ). Additional 

information regarding the formulation of the Jacobian matrix 

and the right-hand side vectors kb  and kf  can be found in 

[8], [13]. In particular, k
n
''Y  is a modified version of the 

standard admittance matrix, which accounts for state-variable-

dependent equivalent current injections (see Section II-B). 

Following the Newton-Raphson approach, (4) or (5) is 

solved iteratively until the largest normalized voltage 

mismatch has fallen below a user-specified tolerance, while 

ensuring that all dependent and independent variables are 

within their physical boundaries (e.g., minimum and maximum 

tap positions, reactive power capabilities, …). 

B. Current Injections vs. Additional Network Constraints 

Due to the flexibility of MNA, loads can be included either 

as equivalent current injections in k
nf  [5], or through 

additional network constraints in k
cf  [7], [8]. On one hand, the 

former approach does not increase the system dimension, but 

its partial derivatives added in k
n
''Y  are fairly involved when 

voltage-sensitive load models are used [5]. On the other hand, 

the latter approach increases the system size (the load currents 

are added to k
cx ), but only a few straightforward elements 

must be added to k
l1C  and k

dC  (e.g., 8 for a single-phase wye-

grounded load) [7], [8]. Moreover, k
c1C  acts as an adjacency 

matrix for loads, and therefore its only non-zero values will be 

1s and potentially –1s.  

Tests on various networks have shown that no approach is 

unequivocally faster, owing in part to the high efficiency of 

modern linear solvers. However, it was noted that the 

equivalent current injection approach converged more 

robustly, likely due to its more linear formulation. The 

robustness of the equivalent current injection approach was 

further improved by representing loads using a fixed 

admittance in k
n
''Y  and a small current in k

ni  compensating for 

the difference between the desired power and the power 

consumed by the fixed admittance. For a constant impedance 

load, the load equation becomes fully linear as the current 

injection is always equal to 0. 

Other types of power injections or network constraints, such 

as DERs in voltage control mode, cannot be formulated 

linearly or quasi-linearly. In this case, their control equations 

are added to k
cf  along with the corresponding states in k

cx  [7], 

[8]. 

C. Initialization 

The Newton-Raphson approach is not self-starting: its initial 

state vector 0x  must be defined to solve (4) or (5). The FS 

approach remains the initialization method of choice in 

traditional transmission-level load flow engines, as the state 

vector is only comprised of nodal voltages in polar 

coordinates, and the phase shift of transformers is typically 

ignored. Initialization is more complicated in NRU, as its 

formulation includes state variables that are not nodal voltages 

(see (4)), and transformer phase shifts are considered. 

Moreover, the selected transformer modeling approach [14] 

involves internal nodes, whose equivalent FS voltage is not 

always trivial to define. 

Due to the above reasons, NRU was originally initialized 

using a single-iteration FP solution [7], [8]. Therein, all power 

injection devices are represented using equivalent admittances. 

The initial reactive power must be guessed for generators in 

voltage control mode, which can be problematic in some 

transmission systems. All load tap changers (LTCs, see 

Section II-D) are fixed. Vector 0
cf  is filled with 0s, 0

1cC  and 
0

2cC  are empty matrices, and 0
dC  is an identity matrix. This 

creates a linear equivalent to (4), allowing the computation of 

an initial guess of the state vector. Moreover, if the 

linearization is accurate, 0x  will be closer to the final solution 

than a FS, possibly reducing the number of iterations. To 

increase speed, the FP matrix is padded with “hard” 0s 

wherever the Jacobian kJ might have non-zeros. 

Consequently, kJ can be built upon the structurally identical 

FP matrix, thereby significantly reducing CPU time since 

matrices are stored in a compressed sparse format [15].  



 

 

The main caveat of this approach is that it requires two 

successive symbolic factorizations (for the FP solution and the 

first Newton-Raphson iteration), which are costly operations. 

More detail on this subject is given in Section II-E. To reduce 

the number of symbolic factorizations and hopefully the CPU 

time, an augmented FS approach is proposed. It makes use of a 

network-model iterator, which computes the complex nominal 

voltage at each node. For transformers, the internal nodal 

voltages are initialized based on the corresponding external 

nodal voltages and winding configuration. Vector 0
di  can be 

set to 0, since the corresponding equations are almost always 

linear; whereas the values of 0
cx  are set using the desired 

power injection and the corresponding FS voltage.  

D. LTC Discretization 

There are two main methods to calculate LTC positions in 

load flows: between iterations (externally, sometimes referred 

to as the error-feedback approach), or by adding tap positions 

as state variables (internally) [16]. The former approach 

usually fits well into constant-matrix solutions [17], [18], but 

requires the external calculation of a sensitivity factor 

(empirically or through a more sound analysis [10]). Hunting 

between different LTCs may also occur [16]. In the latter 

approach, the LTC voltage set point is added to the constraint 

vector (e.g., in k
cf  in NRU). When using a Newton-Raphson 

approach, the solution usually converges to the desired set 

point in a few iterations. The main challenge is that the LTC 

positions are treated as continuous variables, whereas only 

discrete positions are physically feasible. 

Since NRU does not have a constant matrix, and for the sake 

of simplicity, LTC positions are included in k
cx  along with the 

corresponding voltage set-point constraint in k
cf . Another 

benefit of this approach is that it meshes naturally with 

CYME’s “infinite taps” mode, where LTC positions are 

considered as continuous variables. This mode allows planners 

to overcome the well-known problem of the multiplicity of 

load flow solutions due to LTC bandwidths, which cannot 

guarantee a worst-case solution. By using the lower bandwidth 

value as the voltage set point along with continuous LTC 

positions, planners can obtain under-voltages that are lower or 

equal to the worst physically possible under-voltage, and thus 

plan their network safely and reliably. This approach can be 

easily tweaked to study over-voltages arising due to high PV 

penetration and reverse power flow. 

Since many distribution engineers require feasible (discrete) 

LTC positions, a normalization scheme is also needed. A “step 

discretization” approach was first developed in NRU. Based 

on the fact that downstream voltage regulators/transformers 

have little impact on the upstream voltage, after initial 

convergence, LTCs were discretized one by one following a 

downstream path. The main disadvantages of this approach are 

twofold. First, it is numerically costly for networks with many 

LTCs, since two extra iterations are usually needed per LTC. 

Second, for meshed networks, the discretization order is not 

always obvious. To overcome these problems, this paper 

presents a “joint discretization” approach. After the first 

convergence, all LTCs are normalized at once. Due to the 

concurrent discretization, the controlled voltage of some LTCs 

may end up outside of the specified bandwidth. A detection-

correction step has been devised. It checks if all constraints are 

respected. When it is not the case, the corresponding LTC 

positions are changed by ±1. This is repeated until all 

constraints are respected. A break  condition is added if 

hunting is detected, but this is unlikely on real customer 

networks. Finally, the transformer LTC position (primary or 

secondary) and the regulator operating mode (e.g., bi-

directional, co-generation [19], …) must be considered to 

choose whether the LTC positions must be incremented or 

decremented to move towards the bandwidth. 

E. Solution of Linear Systems 

Roughly speaking, efficient numerical solution of (4) or (5) 

using sparse methods includes permuting and pre-ordering the 

unsymmetric indefinite Jacobian matrix to reduce fill-ins 

(symbolic factorization), calculating the L and U factors 

(numerical factorization), and solving using backward-forward 

substitution. When considering matrix-based load flows, it has 

become almost axiomatic to say that the solution of the linear 

equations is the “main computational bottleneck [11]”. 

Consequently, since factorization is costlier than backward-

forward substitution, it is pretty much accepted that methods 

with constant matrices (therefore requiring only one 

factorization) will be more efficient than load flows with 

changing matrices, unless they require significantly more 

iterations. For instance, in the 1970s, the Fast Decoupled 

formulation was shown to be around 5 times faster per 

iteration than the full Newton-Raphson formulation [16].  

However, in view of today’s highly efficient linear solvers 

such as KLU [12] and PARDISO [11], and based on our 

practical experience, we make the two following claims: 1) in 

complex commercial-grade packages such as CYME, the 

percentage of time of a full Newton-Raphson load flow spent 

on factorization is relatively small (this will be quantified in 

Section III-D); and 2) numerical factorization is 

computationally cheap. Since the same symbolic factorization 

can be reused from iteration to iteration when the matrix non-

zero pattern remains constant, based on the 2
nd

 claim, a full 

Newton-Raphson approach can nowadays be competitive with 

constant-matrix methods, and sometimes even faster if it 

requires fewer iterations. This is especially true when care is 

taken to avoid symbolic factorizations as much as possible, for 

instance by discretizing all taps jointly as explained in Section 

II-D. In that approach, the corrective steps do not require 

additional symbolic factorizations since only the numerical 

values change. 

PARDISO [11], which is included in Intel MKL, was 

initially used as NRU’s solver. It is a general-purpose package 

that calls different solvers depending on the matrix properties 



 

 

(e.g., real or complex numbers, symmetric or unsymmetric, 

positive (semi-)definite or indefinite, …). This is an interesting 

feature for a wide-ranging distribution system analysis 

program such as CYME, as the matrices generated by different 

modules often have different properties. KLU [12] was 

recently tested as it is designed for circuit matrices, which, 

according to [12], are extremely sparse. This is especially true 

of the Jacobian of radial systems, but less so for urban meshed 

networks. The performance of PARDISO and KLU for 

different test systems are presented in Section III-D. 

III. CASE STUDIES 

The numerical performance of NRU for each pair of 

proposed initialization methods, discretization techniques, and 

solvers are tested on 6 different networks [20]–[21]. The 

salient features of these test systems are presented in Table I. 

In particular, the IEEE 342 and Util1 test systems are urban 

meshed networks, the latter being extremely large for 

distribution systems. In addition to having several inline 

voltage regulators, the Util2 and Util3 test systems also have 

high PV penetration. The number of nodes reported in Table I 

differ from those of the official IEEE test feeders; this is due 

to a different (and inconsequential) way of counting nodes. 

Moreover, to provide additional insight, the detailed CPU 

timings for one of these systems is provided, and a comparison 

between the numerical efficiency of NRU and VDU serves as 

a closing statement. 

All tests are executed on a special version of CYME 7.2 

used in the course of the Department of Energy-sponsored 

“Rapid QSTS Project”. This version runs on a dedicated 

benchmark machine (3.4 GHz i7-2600 CPU with 8 GB of 

RAM). A tolerance of 0.01% on the voltage mismatch is used 

as the stopping criterion. 

A. Initialization 

NRU’s numerical efficiency using the FP and FS 

initialization methods is presented in Table II for the subject 

test systems (all LTCs are operating in “infinite taps” mode 

and PARDISO is used). The CPU time is presented in 

normalized form with respect to the FP approach. For two 

networks, an additional iteration is required with the FS 

approach; whereas for the other four, the iteration count is 

identical with both initialization procedures. This is explained 

by the fact that the FP approach typically yields a state vector 

that is closer to the final solution. This can be observed in Fig. 

1, where the voltage mismatch of four of the test systems is 

plotted as a function of the iteration. Fig. 1 also demonstrates 

that both approaches converge almost quadratically. Only the 

IEEE 342 system converges slower near the end, due to its 

ungrounded nature and the resulting ill-conditioned matrix. 

Whether an additional iteration is required or not, the solution 

time remains smaller with the FS method, ranging from 83% to 

92.7% of the CPU time of the FP approach.  

TABLE I 

MAIN PROPERTIES OF THE TEST SYSTEMS. 

Network Nb. Nodes Nb. Loops Nb. LTCs 

CKT5 [9] 3003 0 0 

IEEE 342 [20] 390 71 0 

IEEE 8500 [21] 4875 0 4 

Util1 28425 3180 14 

Util2 2370 1 10 

Util3 4066 0 14 

 
TABLE II 

NUMBER OF ITERATIONS AND NORMALIZED CPU TIME FOR A LOAD FLOW 

SOLUTION USING FIXED POINT AND FLAT START INITIALIZATION. 

 Fixed Point Init. Flat Start Init. 

Network Nb. Iter. CPU Time Nb. Iter. CPU Time 

CKT5 2 100% 3 92.7% 

IEEE 342 2 100% 2 83.0% 

IEEE 8500 3 100% 4 90.6% 

Util1 5 100% 5 90.6% 

Util2 3 100% 3 86.8% 

Util3 3 100% 3 88.9% 

 

 
Fig. 1. Convergence pattern of four of the test systems using the fixed point 

(FP – blue square markers) and flat start (FS – red diamonds markers) 

initialization approaches. 

 

To verify the generalization of these results, the NRU load 

flow is executed on all the distribution systems of an entire 

region of a large utility (657 feeders for a total of 73 

independent networks). The majority of these networks are fed 

by Yg-Delta transformers with a grounding transformer on the 

secondary side, and the peak load scenario is considered. The 

combination of these two conditions often causes problems to 

distribution load flow engines (in fact, 2 of the networks do 

not converge after 200 iterations when using CYME’s robust 

VDU engine with a relaxed tolerance of 0.1%). With NRU, all 

networks converge independently of the initialization 

approach. The FS approach requires an extra iteration for 50 

networks; whereas the same number of iterations is needed for 

the other 23. 



 

 

TABLE III 

NUMBER OF ITERATIONS AND NORMALIZED CPU TIME FOR A LOAD FLOW 

SOLUTION USING STEP AND JOINT LTC POSITION DISCRETIZATION. 

 Step Discret. Joint Discret. 

Network Nb. Iter. CPU Time Nb. Iter. CPU Time 

IEEE 8500  12 100% 9 87.2% 

Util1 28 100% 7 31.5% 

Util2 23 100% 5 43.2% 

Util3 30 100% 7 42.4% 

 
TABLE IV 

NUMBER OF ITERATIONS AND NORMALIZED CPU TIME FOR A POWER 

FLOW SOLUTION USING THE PARDISO AND KLU SOLVERS. 

 PARDISO KLU 

Network Nb. Iter. CPU Time Nb. Iter. CPU Time 

CKT5 3 100% 3 89.2% 

IEEE 342 2 100% 2 92.8% 

IEEE 8500 9 100% 9 74.2% 

Util1 7 100% 7 225.4% 

Util2 5 100% 5 75.8% 

Util3 7 100% 7 73.4% 

 

B. Discretization 

The number of iterations and normalized CPU time for the 

test systems using the step and joint LTC discretization 

approaches are summarized in Table III (the FS method is 

used along with PARDISO). The results for CKT5 and IEEE 

342 are not presented as they do not have LTCs. As expected, 

the iteration count and CPU times are reduced with the joint 

discretization scheme; this reduction is drastic for networks 

with several LTCs (e.g., 7 iterations instead of 28 for Util1, 

requiring only 31.5% of the original CPU time). As each 

discretization usually results in 2 (sometimes 3) additional 

iterations, it can be seen by comparing Tables II and III that 

the first joint discretization sometimes resulted in controlled 

voltages outside of the specified bandwidth, and that 

corrective tap changes were needed to find an adequate 

solution.  

C. Solvers 

The numerical performance of NRU using the PARDISO 

and KLU linear solvers are presented in Table IV for the 6 test 

systems (the FS and joint discretization techniques are used). 

As it is optimized for extremely sparse circuit matrices, KLU 

outperforms PARDISO on 5 of the 6 systems; however, for the 

very large urban meshed network, PARDISO is more than 

twofold faster than KLU. It is therefore suggested to use KLU 

for radial and weakly meshed systems, and PARDISO for 

highly meshed networks. A criterion based on the loop-to-node 

ratio can be added to the code to automatically select the 

preferred linear solver for any given system. 

 

 

TABLE V 

DETAILED CPU TIMINGS OF AN NRU LOAD FLOW SOLUTION. 

Total Load Flow 58.61 ms 

 Create Segment  19.90 ms 

 Data Exchange (CYME → NRU)  1.57 ms 

 Initialization (build Jacobian)  14.79 ms 

 Iteration #1  13.87 ms 

  Update Jacobian   0.494 ms 

  Create Vector (
kk fb − )   1.162 ms 

  Symbolic Factorization   9.081 ms 

  Numerical Factorization   2.879 ms 

  Solve   0.164 ms 

  Convergence Check   0.080 ms 

 Iteration #2  4.93 ms 

  Update Jacobian   0.527 ms 

  Create Vector (
kk fb − )   1.182 ms 

  Numerical Factorization   2.990 ms 

  Solve   0.169 ms 

  Convergence Check   0.056 ms 

 Get Results (NRU → CYME)  2.821 ms 

 

D. Detailed Timings 

To better assess the numerical performance of NRU, several 

timers were added to the major code sections. The resulting 

CPU timings for the IEEE 342 test system with PARDISO are 

presented in Table V. The “Create Segment” part of the code 

consists of reading and treating the network file: it accounts 

for around a third of the CPU time. Creation of the matrix is 

also non-negligible, as it requires approximately 1/4
th

 of the 

total CPU time, which is almost the same as for symbolic and 

numerical factorizations combined. This contradicts the well-

known idea that matrix factorization is the main computational 

bottleneck in load flow calculations. Numerical factorization is 

also about 3 times faster than symbolic factorization. Due to 

this, the 2
nd

 iteration accounts for less than 10% of the CPU 

time. While these exact ratios depend on the test system and 

the solver, they clearly demonstrate that a full Newton-

Raphson approach is not much slower than constant-matrix 

solutions. 

E. Comparison Between NRU and VDU 

Finally, the CPU times necessary to solve the load flows of 

the six test systems with CYME’s NRU and VDU engines are 

presented in Table VI. NRU is initialized using FS, the LTCs 

are discretized jointly, and either KLU or PARDISO is used, 

based on the criterion explained in Section III–C. It is 

observed that VDU  does not converge on 3 of the 6 systems. 

The IEEE 342 and Util1 test systems diverge due to their 

highly meshed structure; whereas hunting between the 14 

LTCs occurs when trying to solve the Util3 network. It is 

emphasized that Table VI is not meant as the definitive 

comparison between matrix-based and ladder iterative 

methods, but simply as a comparison between two optimized



 

 

TABLE VI 

NUMBER OF ITERATIONS AND NORMALIZED CPU TIME USING THE NRU 

AND VDU LOAD FLOW SOLVERS (THE DASH (–) INDICATES 

DIVERGENCE). 

 NRU VDU 

Network Nb. Iter. CPU Time Nb. Iter. CPU Time 

CKT5 3 0.174 s 4 0.142 s 

IEEE 342 3 0.122 s – – 

IEEE 8500 9 0.531 s 19 0.733 s 

Util1 5 5.400 s – – 

Util2 5 0.211 s 13 0.205 s 

Util3 8 0.298 s – – 

 

commercial-grade distribution load flow solvers. As 

previously demonstrated in [6] in different environments, the 

cost per iteration is smaller for VDU than NRU; whereas the 

former typically requires fewer iterations. In particular, NRU 

converges in much fewer iterations than VDU on highly 

loaded systems with several controls, such as the IEEE 8500 

system. Overall, the computational cost of NRU is absolutely 

competitive with VDU; in fact, NRU is even faster than VDU 

on some systems.  

IV. CONCLUSION 

This paper presents the general structure of a commercial-

grade load flow engine suitable for distribution systems of all 

topologies, called Newton-Raphson Unbalanced (NRU). Three 

often overlooked aspects of distribution load flow calculations 

are discussed in detail: initialization, calculation and 

discretization of tap changer positions, and solution of the 

resulting linear equations. Computer studies on multiple 

distribution systems support the design choices made 

regarding the three aforementioned aspects. They also 

demonstrate that the versatile NRU engine is very competitive 

in terms of CPU time with a topology-limited ladder iterative 

engine. As a consequence of its high numerical efficiency, 

NRU is well suited to meet the increasing demand of 

distribution system load flow solutions arising from higher 

levels of PV penetration. 
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